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PROPAGATION OF LINEAR WAVES IN GAS-SATURATED POROUS

MEDIA WITH ALLOWANCE FOR INTERPHASE HEAT TRANSFER

UDC 532.546V. Sh. Shagapov, I. G. Khusainov, and V. L. Dmitriev

The effect of gas–skeleton heat-transfer processes on propagation of fast and slow waves in a porous
medium is examined. Frequency intervals are identified, in which attenuation of waves in a gas-
saturated porous medium is mainly controlled by the heat-transfer processes.
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Introduction. The majority of natural and technological media are not homogeneous and, hence, cannot
be classified as liquids, gases, or deformable solids. The differences in the properties of individual phases composing
a medium and the interphase interactions play the governing role in the dynamics of such media.

Acoustic methods offer most powerful tools for studying such formations. In particular, based on an analysis
of the echo signal related to the structure and properties of the medium under study, one can monitor many
processes in porous media (restoration of natural permeability, prevention and resolving of problems related to
liquid adsorption, etc.).

Theoretical and experimental studies of acoustic-wave propagation in porous media present an urgent matter
of significance for gaining a better insight into processes that accompany the use of advanced technologies dealing
with porous media. There are many reported studies concerning the acoustics of porous media and propagation of
waves in such media [1–10].

A study of weak disturbances propagating in a deformable double-porosity medium saturated with a liquid
was reported by Gubaidullin and Kuchurugina [1]. In such media, one transverse and three longitudinal waves,
namely, one deformation wave and two filtration waves, were found to propagate. The velocity of the waves was
considered as a function of interphase force interaction.

Egorov et al. [2, 3] considered the propagation of monochromatic waves in thin-layered saturated media by
averaging differential equations with rapidly oscillating coefficients. Primary attention was paid to the transfor-
mation attenuation mechanism for such waves. Smirnov and Safargulova [4] examined the structure of waves in
porous media. Gubaidullin et al. [5] considered the penetration of a stepwise wave through the gas–porous medium
interface and its reflection from a rigid wall covered by a porous material. The effect of porous-medium and wave
parameters on the reflection process was examined.

In the works cited above, the thermal effects due to the interphase interaction, which may appear significant,
were ignored.

The influence of interphase heat- and mass-transfer processes on propagation of weak disturbances in foams
was considered by Shagapov [6], who obtained a dispersion relation for waves and examined their phase velocity
and attenuation factors as functions of medium and disturbance parameters.

In the present work, we examine the influence of interphase thermal effects and interphase forces on propa-
gation of waves in porous media. The thermal effects are taken into account for the first time.

Basic Equations. We consider a porous medium (e.g., a sponge) saturated with a gas. In analyzing the
propagation of one-dimensional waves in such media, we assume that the wave length is much greater than the size
of pores in the medium.
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We write the linearized macroscopic continuity equations for the skeleton of the porous medium and for the
gas in the pores in the two-velocity approximation:

∂ρj

∂t
+ ρj0

∂vj

∂x
= 0. (1)

Here, ρj and vj are, respectively, the density and velocity of the jth phase. The subscript j = s, g refers to skeleton
parameters and to the parameters of the gas in the pores, and the additional subscript 0 refers to the initial state.

The momentum equation for the system as a whole is

ρg,0
∂vg

∂t
+ ρs,0

∂vs

∂t
= αs,0

∂σs

∂x
− αg,0

∂pg

∂x
, (2)

where pg is the gas pressure, αs and αg are the volume contents of the solid and gas phases, respectively, and σs is
the stress. For the skeleton, we adopt the Voigt model [11]. Then, we have

σs = Esε + µs
∂ε

∂t
,

∂ε

∂t
=

∂vs

∂x
, (3)

where Es and µs are the elastic modulus of the porous skeleton and its dynamic viscosity, respectively. The
momentum equation for the gas phase is [7]

ρg,0
∂vg

∂t
= −αg,0

∂pg

∂x
− F, F = Fm + Fµ + FB , (4)

where
Fm =

1
2

ηmαg,0αs,0ρ
0
g

(∂vg

∂t
− ∂vs

∂t

)
, Fµ =

9
2

ηµαg,0αs,0µg(vg − vs)a−2
0 ,

FB = 6ηBa2
0

√
πρ0

gµg

t∫
−∞

∂

∂τ
(vg − vs)

dτ√
t− τ

.

Here, Fm is the virtual-mass force due to inertial interaction between the phases, Fµ is the analog of the Stokes
viscous-friction force, FB is the Basset force due to nonstationary effects, µg is the dynamic viscosity of the gas,
and ηm, ηµ, and ηB are some coefficients that depend on the parameters of the porous medium [1].

The heat-dissipation processes in the system under study are determined by the temperature distribution in
the vicinity of the interfaces between the phases. To describe the temperature-field micrononuniformities, we use
the medium-structure schematization proposed in [7]. We consider the gas-saturated porous medium as a system
of spherical gas bubbles surrounded by a skeleton-material layer. Thus, at each macroscopic point defined by the
coordinate x, we introduce a typical cell that consists of a gas bubble and the adjacent part of the skeleton. Inside
the cell, we have some temperature distribution T ′j(t, x, r) and some gas-density distribution ρ′0g (t, x, r), where r is
the coordinate reckoned from the center of the cell.

The relation between the density ρ′0g (t, x, r) and the true mean density ρ0
g(t, x) for the gas phase is given by

the expression

ρ0
g =

3
4πa3

a∫
0

ρ′0g 4πr2 dr,

where a is the pore radius.
In addition, for the true densities ρ0

j and for the volume phase contents αj , we can write the kinematic
relations

ρj = αjρ
0
j , αg = a3/(a + b)3, αg + αs = 1,

where b is the half-thickness of the pore wall.
If the condition b � a (αs � 1) holds, we have αs = 3b/a.
To describe the temperature distribution in a cell of the porous medium, we write the following linearized

heat-conduction equations [6]:

ρ0
g,0cg

∂T ′g
∂t

= λgr
−2 ∂

∂r

(
r2

∂T ′g
∂r

)
+

∂pg

∂t
(0 < r < a0); (5)

ρ0
s,0 cs

∂T ′s
∂t

= λs
∂2T ′s
∂r2

(a0 < r < a0 + b0). (6)
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Here λj and cj are, respectively, the thermal conductivity and the specific heat capacity at constant pressure
(j = g, s), a0 is the mean pore radius, and b0 is the mean half-thickness of the pore walls.

With regard for the temperature and heat-flux continuity at the interface between the phases r = a0, we
write the boundary conditions at this interface for Eqs. (5) and (6) as

T ′g = T ′s , λs
∂T ′s
∂r

= λg

∂T ′g
∂r

(r = a0). (7)

We write the condition of temperature finiteness at the centers of the bubbles and the condition of no heat
transfer between the cells (condition of cell adiabaticity):

∂T ′g
∂r

= 0 (r = 0),
∂T ′s
∂r

= 0 (r = a0 + b0). (8)

We assume that the gas contained in the pores of the medium is calorifically perfect. Then,

pg = ρ′0g RT ′g, (9)

where R is the universal gas constant.
Propagation of Linear Waves in the Porous Medium. We seek the solution of system (1)–(6), (9) in

the form of decaying running waves

ρ0
j , vj , pj , αj

∼= exp [i(Kx− ωt)], T ′j = ATj
(r) exp [i(Kx− ωt)], K = k + iδ, (10)

where ω is the circular frequency, K is the complex wavenumber, Cp = ω/k is the mean phase velocity, and δ is the
attenuation factor.

We obtain the expressions for the distributions of temperatures T ′g and T ′s by solving system (5), (6) with
allowance for conditions (7) and (8):

AT ′
g

= T0(1− γ−1)
[
1−A

sinh (ygr/a0)
sinh (yg)

a0

r

]Apg

P0
,

AT ′
s

= T0(1− γ−1)
cosh [ys(a0 + b0 − r)/b0]

cosh (ys)
Apg

P0
(1−A),

A = 1/[1 + ys coth (ys)Πg(yg)/η], Πg(yg) = 3[yg coth (yg)− 1]y−2
g ,

yg =

√
− iωa2

0

æg
, ys =

√
− iωb2

0

æs
, æg =

λg

ρ0
g,0cg

, æs =
λs

ρ0
s,0cs

, η =
αs,0ρ

0
s,0cs

αg,0ρ0
g,0cg

.

From the condition of existence of a solution of the form (10), after some re-arrangements, we obtain the
following dispersion relation:

K

ω
= ± 1

Cg

√
2

√
B1 + B2C̃2 ±

√
(B1 + B2C̃2)2 − 4B3C̃2. (11)

Here
B1 = (1 + χT )(1 + iχV αs,0), B2 =

1 + iβχV

1− iωµs/Es
, B3 =

(1 + χT )(iχV (αs,0 + βαg,0) + 1)
1− iωµs/Es

,

β =
ρ0
g,0

ρ0
s,0

, C̃ =
Cg

Cs
, Cg =

√
γP0

ρ0
g,0

, Cs =

√
Es

ρ0
s,0

, χT = (γ − 1)A Πg(yg), χV =
1

ωτ∗
,

τ∗−1 = −iωηmαg,0αs,0/2 + ηµαg,0αs,0νga
−2
0 + ηB(1 + i)αg,0αs,0a

−1
0

√
2νgω, νg = µg/ρ0

g,0,

where Cg and Cs are the phase velocities of the wave in the gas and in the skeleton, and ρ0
j0 is the initial true

density of the jth phase.
The coefficients χV and χT allow for the effect of nonstationary interphase interaction forces and the effect

of heat exchange between the gas and the skeleton on the dynamics of the fast and slow waves.
Calculation Results. From the dispersion relation (11), we calculated the mean phase velocities and the

attenuation factors of both waves. The calculations were carried out for the rubber–air (porous medium of the sponge
type) and rubber–hydrogen systems. The parameters of the phases, taken for an ambient temperature of 300 K,
were as follows: ρ0

s,0 = 920 kg/m3, Es = 108 Pa, λs = 0.15 W/(m ·K), cs = 1571 J/(kg ·K), and µs = 100 Pa · sec
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Fig. 1. Attenuation factor (a) and phase velocity (b) of the slow and fast waves versus frequency
for a0 = 10−3 m and b0 = 3.57 · 10−5 m.
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Fig. 2. Attenuation factor (a) and phase velocity (b) of the slow and fast waves versus frequency
for a0 = 10−4 m and b0 = 3.57 · 10−6 m.

for rubber; ρ0
g,0 = 1.29 kg/m3, cg = 1006 J/(kg ·K), λg = 0.025 W/(m ·K), γ = 1.4, and µg = 1.86 · 10−5 Pa · sec

for air; ρ0
g,0 = 0.09 kg/m3, λg = 0.17 W/(m ·K), µg = 0.84 · 10−5 Pa · sec, cg = 14284 J/(kg ·K), and γ = 1.41 for

hydrogen. In the calculations, satisfaction of the continuity equation was verified; this condition requires the wave
length to be greater than the characteristic size of medium nonuniformity.

Figures 1 and 2 show the phase velocity and the attenuation factor of the slow (curves 1, 2, and 3) and
fast (curves 4, 5, and 6) waves versus frequency for the rubber–air system. Curves 2 and 6 were calculated with
allowance for heat transfer and disregarding the interphase forces, curves 3 and 5 were obtained with allowance for
the interphase forces and disregarding heat transfer, and curves 1 and 4 were calculated with allowance for both
heat transfer and the interphase forces. Here and below, the gas content was assumed to be αg,0 = 0.9.
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Fig. 3. Effect of the pore size on the attenuation factor (a) and phase velocity (b) of the slow and
fast waves.
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Fig. 4. Attenuation factor (a) and phase velocity (b) of the slow and fast waves versus frequency
for the rubber–air and rubber–hydrogen systems for a0 = 10−3 m.

It follows from Figs. 1 and 2 that the heat-transfer process strongly affects attenuation of fast waves in the
low-frequency region; the effect of heat transfer on attenuation of slow waves becomes noticeable at frequencies above
ω∗ ≈ 102 sec−1. A tenfold decrease in the characteristic pore size results in a 20-fold increase in the characteristic
frequency ω∗. At higher frequencies (ω ≈ 106 sec−1), the effect of heat transfer and interphase forces on the velocity
of the slow wave is insignificant.

Figure 3 illustrates the effect of pore sizes on the velocity and attenuation factor of the slow wave (curves 1
and 2) and fast wave (curves 3 and 4). Curves 1, 3 and 2, 4 refer to the pore sizes a0 = 10−3 m and a0 = 10−4 m,
respectively. As the pore size decreases, the velocity of the slow wave in the gas decreases, whereas the velocity of
the fast wave weakly depends on the pore size.
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As the pore size decreases by a factor of ten, the attenuation rate of the slow wave displays a tenfold decrease.
The fast wave in a medium with large pores decays more rapidly in the low-frequency region; above the frequency
of ω∗ ∼ 103 sec−1, the attenuation rate of this wave for the pore sizes considered remains almost unchanged.

Figure 4 shows the velocity and attenuation factor of the slow wave (curves 1 and 2) and fast wave (curves 3
and 4) versus frequency. Curves 1 and 3 refer to the rubber–air porous medium, and curves 2 and 4 refer to the
rubber–hydrogen system. The slow wave in the rubber–air system is seen to decay more rapidly than in the rubber–
hydrogen system. The fast wave decays more rapidly in the rubber–hydrogen porous medium in the low-frequency
region; in the frequency range ω∗ > 102 sec−1, the attenuation in both cases is almost identical. The velocity of
the slow wave in hydrogen is greater than in air.
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3. A. G. Egorov, A. V. Kosterin, and É. V. Skvortsov, Consolidation and Acoustic Waves in Saturated Porous
Media [in Russian], Izd. Kazan. Univ., Kazan’ (1990).

4. N. N. Smirnov and S. I. Safargulova, “Propagation velocity of weak disturbances in porous media,” Prikl. Mat.
Mekh., 55, No. 3, 410–415 (1991).

5. A. A. Gubaidullin, D. N. Dudko, and S. F. Urmancheev, “Modeling of the interaction between an air shock
wave and a porous screen,” Combust. Expl. Shock Waves, 36, No. 4, 496–505 (2000).

6. V. Sh. Shagapov, “Influence of interphase heat- and mass-transfer processes on propagation of weak disturbances
in foams,” Teplofiz. Vys. Temp., 23, No. 1, 126–132 (1985).

7. R. I. Nigmatulin, Dynamics of Multiphase Media, Hemisphere Publ., New York (1991).
8. R. I. Nigmatulin, Fundamentals of Mechanics of Heterogeneous Media [in Russian], Nauka, Moscow (1978).
9. V. Sh. Shagapov, N. M. Khlestkina, and D. Lhuillier, “Acoustic waves in channels with porous and permeable

walls,” Transp. Porous Media, 35, No. 3, P. 327–344 (1999).
10. K. Tuncay and M. Y. Corapcioglu, “Body waves in fractured porous media saturated by two immiscible New-

tonian fluids,” Trans. Porous Media, 23, No. 3, 259–273 (1996).
11. M. Reiner, Deformation and Flow [Russian translation], Gostekhizdat, Moscow (1963).

557


